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In this paper a method is described for constructing a curvilinear-orthogonal mesh 
grid. A method to perform calculations in such mesh grid is also illustrated. The method 
is demonstrated for the problem of laminar flow in rod bundle geometry. The com- 
parison of the results with those of other authors is good. 

1. INTRODUCTION 

In designing nuclear reactors with smooth fuel rods the most precise information 
possible is wanted about the stresses acting upon the fuel rod claddings, i.e., on 
the temperatures and temperature gradients to which they are subjected, in order 
to allow an optimum selection of fuel rod pitch, diameter, and wall thickness as 
well as the tolerances to be imposed on these quantities. These data are especially 
important for fuel elements with high radial power gradient, for all corner and 
wall rods, and for the case of perturbations in the fuel rod arrangement. Since the 
effects of these perturbations and those of the fuel element box walls are not 
limited to the vicinity of a single fuel rod, an area including several fuel rods 
must be taken into consideration. The conservation equations must be solved in 
order to obtain the temperatures and temperature gradients in such an area. 
A problem of special difficulty here is the determination of the velocity and 
temperature fields in the coolant between the fuel rods. The coupled conservation 
equations for mass, impulse, and enthalpy must be solved in a complicated 
geometry. 

Turbulent flow has been calculated successfully, allowing for molecular and 
eddy viscosities in channel and plate flows having a simple geometry with differen- 
tial approximations for the conservation equations [ 1, 2, 3, 41. If the eddy viscosity 
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is known as a function of the location, a conclusion about the turbulent exchange 
parameter for the heat can be derived, for instance, by using the Reynolds analogy 
or other suitable conversion schemes. This means that the heat transport problem 
for this flow can be solved too [2, 41. One important prerequisite to a successful 
solution is that the flow cross section under consideration should be simple to 
describe in the coordinate system used. 

A good description requires that the following prerequisites be met. 

(1) 

(2) 

(3) 

(4) 

The area boundary lines shall be the coordinate lines. Where a boundary 
line coincides with a coordinate line it is easy to state the boundary condi- 
tions precisely. And a precise statement of the boundary conditions is 
one prerequisite for a satisfactory solution. 

A selective microsubdivision must be possible in areas subject to major 
function value changes. As a rule, the accuracy of the approximation of 
the function will decrease with increasing difference between two neigh- 
boring function values, so that it is desirable to be able to select a smaller 
subdivision in such areas. 

A satisfactory result must be obtained from a minimum number of points. 
This means that a minimum of storage capacity and short computation 
times are required for one computation run, so that a major part of a fuel 
element can be treated in one computation run. 

The grid points must be arranged in accordance with simple laws, i.e., the 
same number of mesh points must be encountered in each line or column 
of the matrix. In that case, geometrically adjacent points in the data field 
can always be arranged on the computer in accordance with the sketch 
shown below. When this requirement is met, processing the field, i.e., 
establishing and solving the system of differential equations, will be 
facilitated considerably, for, if we have established the equation for a 
point (i,j), it will suffice to vary the indices i and j in order to describe the 
entire region (see Fig. 1). 

i,j+l 

i-l ’ -I- i’ W 

li,j-l 

FIG. 1. Simple-law mesh grid, 
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All of these four requirements are met by the curvilinear-orthogonal coordinate 
system shown in Fig. 2 for the geometry of a rod bundle, while all the other 
conventional coordinate systems meet only one, or at best two, of these pre- 
requisites. 

FIG. 2. Representation of a fuel-element section having a hexagonal fuel rod arrangement, 
using a curvilinear-orthogonal grid of 40 x 80 points. The grid points have been connected 
linearly. 
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1 a. NOTATIONS 

Designation 

fuel rod diameter 

hydraulic diameter 

force 

fuel rod pitch 

pressure 

coordinate line 

velocity in the Sl- or z-direction 

mean velocity, referred to channel cross-section area 

dynamic viscosity 

Cartesian coordinates 

2. COMPUTATION WITH CURVILINEAR-ORTHOGONAL COORDINATES USING THE 
EXAMPLE OF THE NAVIER~TOKES EQUATION 

The theory of the treatment of problems in general curvilinear-orthogonal 
coordinate systems is not new [6], yet it is hardly ever used for computations. 
Thus the author is aware of the treatment of only one stability problem in 
curvilinear-orthogonal coordinates [7]. However, in [7] there was only qualitative 
agreement of the results with the results obtained via other procedures (such as 
the finite-elements method). Unlike the tensor presentation used in [7], the problem 
equation here is derived from a curvilinear-orthogonal volume element of known 
dimensions. It was found empirically that improved accuracy is obtained if the 
arc length itself rather than differential geometry representations of the arc length 
(i.e., involving the metric components) is used in the finite-difference equation. 
In geometries where one or more metric components are strongly varying, the 
differential geometry expressions for arc length are poorly approximated, which 
probably explains why only qualitative agreement was found in [7]. 

The Navier-Stokes equation for three-dimensional flow consists of three 
coupled differential equations. However, we shall stipulate that it is sufficient for 
the description of our flow problem to consider only one velocity direction, that 
the fluid properties are constant, and that we are concerned with a steady-state, 
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laminar, fully developed flow in a channel of noncircular cross section. In that 
case, we obtain only the following equation, using Cartesian coordinates. 

This is a balance of forces in the z-direction on a volume element. We shall now 
derive the corresponding difference equation, using a volume element of the type 
shown in Fig. 3. 

FIG. 3. Curvilinear-orthogonal volume element. 

Since we shall consider a duct flow, as stipulated in Fig. 3, Sl is selected as 
a straight line. Coordinate lines S2 and S3 shall be curvilinear-orthogonal 
coordinates in the plane perpendicular to Sl. 

Since there is a velocity only in the H-direction, the forces will be: 

ill+ = -p+ * ((As2+ + AS2-)/2) . ((AS3+ + AS3-)/2), (2) 

Pl- = +p- . ((AS2+ + AS2-)/2) * ((AS3+ + AS3-)/2), (3) 

Fl2+ = (/h(Avl/As2))+ * AS1 . &3+, (4 

F12- = -(#u(Avl/AS2))- . AS1 * AS3-, (5) 

F=+ = (,4Avl/A,s3))+ . As1 - As2+, (6) 

~13- = -(P(Avl/AS3))- . AS1 . As2-. (7) 

With respect to the problem under consideration these are all the forces affecting 
the volume element; hence 

0 = &Ql+ + pl- + F12+ + F12-- + Fx3+ + P3-, (8) 
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or, expressed by the right-hand sides of (2)-(7), 

0 = -(p+ _ p-) . (AxI+ ; A=) . (A&s?+ ; A=-) 

+/cASl(+$ . AS3f - !& . AS3- + g . AS2+ - g * AS2-). 

Dividing, as usual, the equation by the volume of the element, we obtain 
difference equation 

(9) 

the 

o= _ p+-p- 
AS1 + (AS2+ + AS2-)4r(AS3+ + AS3-) 

- m.AS3+-$ 
( 
Ad+ 

- AS3- + g . AS2+ - $ . AS2-). (10) 

This equation is easily transformed into a well-known form depending on the 
definition of the coordinate lines. 

For instance, if we state that 

Sl =z so that AS1 = AZ, (11) 

s2 = I so that AS2f = AS2- = AS2 = Ar, W) 
and 

s3 = r- ljs so that AS3f = (r + (Ar/2)) * A$; 

AS3- = (r - (Ar/2)) . A+; 

AS3 =r.A+, (13) 
after some rearrangement we find 

AP 
O=-z+p 

X 
( (g)+ - (g- + ($)++ (-g)- + ($)‘- (+gJ) 

Ar 2r r*A+ 

(14) 
If 0.5 . ((Avl/Ar)+ + (AzG/Ar)-) = Avl/Ar, then passing to the limits yields to 

o= -gf+p( “uI+;.!g+L/-?&. &.o (15) 

Consequently, in order to establish difference equations we must know only the 
local dimensions of one mesh unit, i.e., lengths and areas and/or angles. However, 
these lengths and angles can vary from one mesh unit to the next. This is the basic 
difference compared to a Cartesian coordinate system. While, as a rule, the dimen- 
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sions of all mesh units in a Cartesian system are equal, the dimensions differ in 
curvilinear systems. 

Where curvilinear coordinate lines are given as functions, as in a Cartesian 
coordinate system, the lengths and angles of the curvilinear coordinate system 
can be determined with the aid of differential geometry [6]. This will yield the 
information on local lengths and angles in a form suitable for direct use in the 
tensor calculus usually employed for curvilinear systems, i.e., in the metric tensor 
and in the Christoffel symbols. Although in the method described here, as we 
shall explain in Section 3, the coordinate lines are available only as point data; 
the metric tensors and Christoffel symbols can be determined readily, since these 
can be calculated from the basis vectors which are determined by the arc length 
and the potential difference between two neighboring points (see Section 3). This 

FIG. 4. Schematic representation of the selected fuel rod bundle section. 

will ensure that later these coordinate systems can also be used to calculate flows 
having three velocity directions with the aid of tensor calculus. 

Like the Navier-Stokes equation it is possible, of course, to treat the energy 
equation in curvilinear-orthogonal coordinates. 

Hence, these coordinates are a suitable means for representing the conservation 
equations in a fuel rod bundle geometry, under the four requirements defined in 
Section 1. 

3. GENERATION OF A CURVILINEAR-ORTHOGONAL COORDINATE SYSTEM 

In order to facilitate the discussion, the individual sections of the boundary 
curve are numbered consecutively (Fig. 4). This boundary curve has six corners. 
However, the desired mesh grid should have only four corners, which means that 
two angles must be “straightened out.” It is seen from Fig. 2 that the corners (1,2) 
and (4, 5) have been straightened out. 

Hence, we can state that corners (6, l), (2, 3), (3, 4), (5, 6) will remain corners 
even in the curvilinear grid network. 

Now, how can we find orthogonal coordinate lines in the given area? We know 
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that orthogonal lines occur in potential theory. For instance, in an electric field 
there will be field lines between the two plates of a capacitor, i.e., equipotential 
lines and lines of force, i.e., the gradient lines of the potential field. Both types of 
lines are perpendicular to each other throughout the field, and in particular, at the 
field edges. Both types of lines satisfy the potential equation. Hence, we must 
merely solve the potential equation twice in the area of interest, first stating the 
boundary conditions for the potential, and, second, for the force lines. The bound- 
ary conditions for the potential were selected as follows: 

Section 4, 5 charge 4 = 100, 

Section 1, 2 charge 4 = 0, 
Section 3 a+lan = 0, 
Section 6 a+/an = 0. 

The boundary conditions for the force lines: 

Section 3 force * = 0, 
Section 6 force + = 100, 
Section 4, 5 a*lan = 0, 
Section 1, 2 a$/an = 0. 

Using the grid shown in Fig. 5 and the successive-point-overrelaxation method, 
the potential equations are solved. When a solution has been established, the 
potential values of the equipotential lines are determined by division in the desired 
manner of the boundary curve with +5/&z = 0 and by determination of the 

Detail X 

# 

o nodes Cartesian grid 
\ 

+ nodes cylindrical grid 
T  boundary nodes Cartesian grid 

A boundary nodes cylindrical grid 

FIG. 5. Description of a fuel rod bundle by means of mixed cylindrical-Cartesian coordinates. 
The function value for the boundary nodes of the cylindrical grid are interpolated between the 
adjacent nodes of the Cartesian grid. 
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appropriate potential values. The solution field is then scanned for neighboring 
mesh points for which the value of a searched equipotential line lies between their 
potential values. If such a situation is detected, one point of the equipotential 
line is calculated by a local third-order interpolation polynomial for the potential 
field along the appropriate mesh line. When the field and force lines are known 
(as point data), the point of intersection of these lines must be determined. There- 
fore, first those points of the field and force lines are searched with the point of 
intersection lying in between. Then local third-order polynomials are set up for 
both lines, and their point of intersection is calculated. The equipotential line 
between two intersection points now yields the initial point, some intermediate 
points, and the final point. The arc length between the points of intersection is 
then determined by summing up the linear distances between these points. 

Thus the geometry data required to solve Eq. (10) have been determined. 
A somewhat different method of determining a curvilinear-orthogonal coordi- 

nate system for a given region is described by Barfield [8]. In this method, the 
boundary curve of the area of interest is first mapped on a circle and then the 
latter on a rectangle. The Cartesian image area obtained is used to compute the 
coordinates of the grid points, in a manner similar to the technique described in 
this section. The advantage of this method is that, due to the conformal mapping, 
regions having a great variety of boundary curves can be considered, whereas in 
the method described in this paper, any change in the type of the boundary curve 
will require changes in the computer program. The difference between the method 
presented here and that of [8] is: If (X, Y) are the curvilinear coordinates and 
(x, y) are the rectangular Cartesian coordinates, the method of [8] finds the 
mapping functions x(X, Y), JJ(X, Y), whereas the present method finds the inverse 
mapping. 

4. RESULTS FOR LAMINAR VELOCITY FIELDS AND DISCUSSION 

The determination of the orthogonal mesh grid, i.e., the computation of the 
position of the grid points, the distances between grid points, and solving of 
Eq. (IO), is accomplished by means of the KROKOPI PLjl computer code 
(KRummling-Orthogonale KOordinaten in Plngeometrie). This program requires 
about 100 k program storage and about 250 to 350 k data storage, depending on 
the parameters selected. Computation times on the IBM 370/165 are about 5 to 
7 min. The curvilinear-orthogonal coordinate system is generated by solving the 
potential equations cited in Section 3. 

Incorporated into this program is the solution of Eq. (10) in curvilinear-orthogo- 
nal coordinates. The user of this program, therefore, acquires not only geometry 
data, but at the same time a statement as to the reliability of these data in describing 
the geometry (Figs. 11, 12). 
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Figures 6-9 show some plots of the results. On the left-hand sides of these 
figures the grid systems are shown which were used to compute the flow in question, 
and on the right-hand sides are the lines of equal velocity within this flow. The 
velocity differences between the lines decrease by the square, starting out from 
the wall. 

FIG. 6. Isotachs of laminar flow in a hexagonal fuel rod bundle P/D = 1.1. This flow was 
determined by means of the coordinate system shown on the left. 

FIG. 7. Isotachs of laminar flow in a hexagonal fuel rod bundle P/D = 1.5. This flow was 
determined by means of the coordinate system shown on the left. 
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FIG. 8. Isotachs of laminar flow in a square fuel rod bundle P/D = 1.1. This flow was 
determined by means of the coordinate system shown on the left. 

FIG. 9. Isotachs of laminar flow in a square fuel rod bundle P/D = 1.5. This flow was 
determined by means of the coordinate system shown on the left. 

These figures clearly reflect the flexibility and capabilities of the coordinate 
system used, especially if we consider that all the coordinate systems include only 
31 x 31 points. 

Two different criteria must be taken into consideration for an evaluation of 
results. For one, the solution must be consistent in itself, meaning that, for 
instance, where the same function value is obtained at different locations for 
reasons of symmetry, the values achieved in the solution must be the same, within 
acceptable tolerance limits. For another, the results obtained via this procedure 
for a laminar flow can be compared to the results obtained by other authors [5]. 
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FIG. 10. Plot of the symmetry lines of a hexagonal fuel rod arrangement. 

In the case of symmetry validation where a hexagonal fuel rod arrangement is 
used, the function value at point A or B (cf. Fig. 10) can be compared to that at 
point C. This was verified for different fuel rod pitch-to-diameter ratios (P/D 
ratios), and the results are plotted in Fig. 11. 

FIG. 11. Maximum symmetry error as a function of the P/D ratio, hexagonal rod arrangement. 

As expected, the error will rise with decreasing P/D ratio; however, it remains 
within tolerable limits. 

While a comparison of the function values in A and C (cf. Fig. IO) yields a 
statement on the representation of the geometry for the hexagonal fuel rod 
arrangement, this does not apply to a square fuel rod arrangement. Therefore, 
the equation describing the coordinate system for this type of arrangement 
(potential equation) has been solved twice, using first a mixed cylindrical-Cartesian 
coordinate network to generate the curvilinear-orthogonal coordinates, and then 
the newly acquired curvilinear coordinate system (identity mapping). 

Lj yr 
10 11 12 13 P/O - 

FIG. 12. Maximum errors caused by plotting in curvilinear-orthogonal coordinates, shown 
as a function of the P/D ratio, square fuel rod arrangement. 
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TABLE II 

Ratio of Saddle Point Velocity 
TABLE I 

Ratio of Maximum Velocity to fi 

Present Rehme 
PID data PI 

(Point C, Fig. 10) to B 

Present Rehme 
PID data t51 

Hexagonal rod 1.1 2.28 2.43 Hexagonal rod 1.1 0.53 0.57 
arrangement 

1.2 1.98 2.02 
arrangement 

1.2 0.90 0.91 

1.3 1.78 1.79 1.3 1.08 1.09 

1.5 1.59 1.59 1.5 1.22 1.22 

Square rod 1.1 2.47 2.46 Square rod 1.1 0.14 0.14 
arrangement 

1.2 2.31 2.31 
arrangement 

1.2 0.38 0.38 

1.5 1.88 1.89 1.5 0.85 0.85 

TABLE III 

Geometry coeff. K = 2 * Ap . D,lAz .d 

Present Rehme 
PID data t51 

Hexagonal rod 1.1 83.7 83.2 
arrangement 

1.2 loo 101 

1.3 110 110 

1.5 125 122 

Square rod 
arrangement 

1.1 58.6 59 

1.2 81.0 81 

1.5 119 120 

If the presentation were exact, the same potential value would be recovered at 
each grid point in the second solution as was found in the first computation. The 
maximum relative deviation between the first and second computations of the 
potential values has been plotted as a function of the P/D ratio in Fig. 12. 

The maximum errors are encountered only in the corners, A and B (cf. Fig. 10). 
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Throughout the remaining field the errors are significantly lower (by one to two 
powers of 10). 

Hence we can state that problem equations solved with the aid of these geometry 
data will have a maximum geometry related error of approximately 1-2 %. How- 
ever, this error can still be reduced by using a smaller grid subdivision. 

The results acquired in this paper shall now be compared to those obtained by 
Rehme [5]. Rehme represented a characteristic subchannel section by cylindrical 
coordinates and solved the equation numerically for a laminar flow. 

Comparison with the results shown by Rehme in Tables I-III indicates very 
good agreement, especially since Rehme also stated an error of approximately 1 % 
for his values. The only remaining consideration is a comparison of the effort 
involved in the two solution procedures. If we do not include the effort required 
to determine the geometry data for the curvilinear-orthogonal coordinates, we 
will obtain Table IV. 

TABLE IV 

Comparison of the Effort Required to Plot This Characteristic 
Subchannel Section 

Cylindrical Curvilinear-orthogonal 
coordinates coordinates 

Points/area 

Computation time 

Transition to 
plotting a 
larger area 

approx 4,000 

approx 1 min 

transition equation 
always 
required 

70 to 150 

0.3 min 

transition equation 
required only where the 
P/D ratio changes 

With respect to the computation time required for the curvilinear coordinates 
it should be noted that the program is not yet optimized in this respect. 

These results have shown that initial expectations with respect to the economical 
representation of a fuel rod geometry by means of this procedure have been fully 
confirmed. 
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